Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division.

نویسندگان

  • Alexandre W Bisson-Filho
  • Yen-Pang Hsu
  • Georgia R Squyres
  • Erkin Kuru
  • Fabai Wu
  • Calum Jukes
  • Yingjie Sun
  • Cees Dekker
  • Seamus Holden
  • Michael S VanNieuwenhze
  • Yves V Brun
  • Ethan C Garner
چکیده

The mechanism by which bacteria divide is not well understood. Cell division is mediated by filaments of FtsZ and FtsA (FtsAZ) that recruit septal peptidoglycan-synthesizing enzymes to the division site. To understand how these components coordinate to divide cells, we visualized their movements relative to the dynamics of cell wall synthesis during cytokinesis. We found that the division septum was built at discrete sites that moved around the division plane. FtsAZ filaments treadmilled circumferentially around the division ring and drove the motions of the peptidoglycan-synthesizing enzymes. The FtsZ treadmilling rate controlled both the rate of peptidoglycan synthesis and cell division. Thus, FtsZ treadmilling guides the progressive insertion of new cell wall by building increasingly smaller concentric rings of peptidoglycan to divide the cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments

Bacterial cell division in many organisms involves a constricting cytokinetic ring that is orchestrated by the tubulin-like protein FtsZ. FtsZ forms dynamic filaments close to the membrane at the site of division that have recently been shown to treadmill around the division ring, guiding septal wall synthesis. Here, using X-ray crystallography of Staphylococcus aureus FtsZ (SaFtsZ), we reveal ...

متن کامل

FtsZ CTL regulates polymer structure and dynamics

The bacterial tubulin FtsZ polymerizes to form a discontinuous cytokinetic ring that drives bacterial cell division by directing local cell wall synthesis. FtsZ comprises a polymerizing GTPase domain, an intrinsically disordered C-terminal linker (CTL) and a C-terminal conserved α-helix (CTC). FtsZ protofilaments align circumferentially in the cell, with the CTC mediating attachment to membrane...

متن کامل

Bacterial Cell Division: A Swirling Ring to Rule Them All?

FtsZ, a tubulin homologue and the major constituent of the bacterial Z ring, has been shown to assemble into curved filament bundles, which exhibit GTP-hydrolysis-dependent turnover. Surprisingly, the presence of its membrane adaptor FtsA renders this turnover directional, inducing treadmilling and collective circular motion of filaments in vitro.

متن کامل

Cell wall growth during elongation and division: one ring to bind them?

The role of the cell division protein FtsZ in bacterial cell wall (CW) synthesis is believed to be restricted to localizing proteins involved in the synthesis of the septal wall. In this issue of Molecular Microbiology, the groups of Christine Jacobs-Wagner and Waldemar Vollmer provide compelling evidence that in Caulobacter crescentus, FtsZ plays an additional role in CW synthesis in non-divid...

متن کامل

The tubulin homologue FtsZ contributes to cell elongation by guiding cell wall precursor synthesis in Caulobacter crescentus.

The tubulin homologue FtsZ is well known for its essential function in bacterial cell division. Here, we show that in Caulobacter crescentus, FtsZ also plays a major role in cell elongation by spatially regulating the location of MurG, which produces the essential lipid II peptidoglycan cell wall precursor. The early assembly of FtsZ into a highly mobile ring-like structure during cell elongati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 355 6326  شماره 

صفحات  -

تاریخ انتشار 2017